Symmetric Bimonoidal Intermuting Categories and ω × ω Reduced Bar Constructions

نویسندگان

  • Zoran Petric
  • Todd Trimble
چکیده

A new, self-contained, proof of a coherence result for categories equipped with two symmetric monoidal structures bridged by a natural transformation is given. It is shown that this coherence result is sufficient for ω×ω-indexed family of iterated reduced bar constructions based on such a category. Mathematics Subject Classification (2000): 18D10, 55P47

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Fibered Symmetric Bimonoidal Categories to Symmetric Spectra

In here we define the concept of fibered symmetric bimonoidal categories. These are roughly speaking fibered categories Λ : D → C whose fibers are symmetric monoidal categories parametrized by C and such that both D and C have a further structure of a symmetric monoidal category that satisfy certain coherences that we describe. Our goal is to show that we can correspond to a fibered symmetric b...

متن کامل

Strictification of Categories Weakly Enriched in Symmetric Monoidal Categories

We offer two proofs that categories weakly enriched over symmetric monoidal categories can be strictified to categories enriched in permutative categories. This is a ”many 0-cells” version of the strictification of bimonoidal categories to strict ones.

متن کامل

A folk model structure on omega-cat

The primary aim of this work is an intrinsic homotopy theory of strict ω-categories. We establish a model structure on ωCat, the category of strict ω-categories. The constructions leading to the model structure in question are expressed entirely within the scope of ωCat, building on a set of generating cofibrations and a class of weak equivalences as basic items. All object are fibrant while fr...

متن کامل

An Involution on the K-theory of Bimonoidal Categories with Anti-involution

We construct an involution on the K-theory of any bimonoidal category with antiinvolution. Particular examples of such are braided bimonoidal categories. We consider group actions on bimonoidal categories and their induced action on the associated K-theory.

متن کامل

Ring Completion of Rig Categories

In this paper we offer a solution to the long-standing problem of group completing within the context of rig categories (also known as bimonoidal categories). More precisely, given a rig category R we construct a natural additive group completion R̄ of R that retains the multiplicative structure, meaning that it remains a rig category. In other words, it has become a ring category. If we start w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Categorical Structures

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2014